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A numerical algorithm for solving two- or three-dimensional incompressible viscous 
Navier-Stokes equations is presented. The technique presented here is based on a simple 
variant of the Chorin method and is related to the MAC method. Auxiliary velocity fields 
are introduced, which are calculated by the use of a fractional-step procedure for the con- 
vective and diffusive part of the solution. For the pressure resolution, a triple sweep is used 
to obtain the fluid pressure. By these fractional techniques, the three-dimensional equations 
are separated into only one-dimensional forms. Thus, this saves more computation time 
and makes algorithm simple. Some numerical computations are made on flows within square 
and cubic cavities, and some comparisons are made in regard to boundary effects in three- 
dimensional flows. Further, some discussions are made on primary and secondary eddies 
generated in a cubic cavity, and comparisons with those in a square cavity are also made. 
It was found that boundary effects mainly locate near a side wall, but these are not ne- 
gligibly small in a central region in a cubic cavity. 

1. INTRODUCTION 

A number of numerical studies [l-8] have been made of the two-dimensional 
viscous flow generated in a square cavity by the uniform translation of the upper 
surface of a cavity. This physical problem is of theoretical importance because it is a 
typical example of steady separated flow. From the aspect of the numerical computa- 
tion, this may be a good problem to check the numerical method for solving the 
Navier-Stokes equation for its simple boundary conditions. In the three-dimensional 
case, this is also a good problem from the above viewpoint. 

In this paper, a numerical method for solving the three-dimensional incompressible 
Navier-Stokes equation is presented, and some numerical studies are made on the 
flows within a cubic cavity, including a square cavity in the two-dimensional case. 

A few numerical methods for solving the three-dimensional incompressible Navier- 
Stokes equation have been presented. Chorin [9] proposed a useful technique based on 
Helmholtz’s decomposition theorem; any vector field A can be uniquely decomposed 
into its solenoidal part A, (div A, = 0) and its irrotational part Ai (rot Ai = 0) if the 
normal component of A, on the boundary is zero. He adopted Du-Fort Frankel 
relaxation for the decomposition. His method is widely applicable to three-dimensional 
flows. Hirt and Cook [IO] have made computational experiments using an ordinary 
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explicit scheme which is essentially based on Harlow and Welch [I l] (so-called MAC 
method). Nichols and Hirt [12] have applied this to the three-dimensional free 
surface flow. Patanka and Spalding [13] have presented a numerical method for 
solving the steady three-dimensional viscous flow by a parabolic flow approximation. 
When the primary flow direction is dominated by an upstream condition, we can 
neglect its reverse flow effect and diffusion effect in the flow direction. Under these 
assumptions, the steady Navier-Stokes equation becomes parabolic in the flow 
direction. This approximation makes it possible to obtain numerical solutions by a 
stepwise integration in the primary flow direction from prescribed upstream initial 
conditions. This technique was also used by Briley [14] for three-dimensional steady 
flows in ducts. Takami and Kuwahara [1.5] have made numerical studies on the flow 
within a cubic cavity. They made some comparisons with the results for a square 
cavity obtained by Burggraf [3]. 

The technique presented here is based on a simple variant of the Chorin method 
and is essentially related to the MAC method. 

In Section 2, general formulations used here are presented. An essential point in 
numerically solving the incompressible viscous Navier-Stokes equation is how to 
obtain velocity fields satisfying the divergence-free condition. Without solving a large 
scaled homogeneous equation generated by coupling a discretized Navier-Stokes 
equation with a discretized mass balance equation, it is possible to obtain the diver- 
gence-free velocity field by introducing a corrective pressure field or by treating 
independently with the pressure term. These two techniques are essentially the same, 
from the aspect of numerical analysis. Here, the latter technique was adopted, 
corresponding to Chorin’s idea. An auxiliary velocity field is introduced, which is 
calculated while omitting the pressure term from the Navier-Stokes equation. Then 
the pressure field and the velocity field satisfying the divergence-free condition are 
calculated. 

In Section 3, detailed numerical procedures are given, including boundary condi- 
tions. An auxiliary velocity field for the three-dimensional flow is numerically obtained, 
using the technique of the splitting and fractional-step methods [16]. These technique 
can be applied to multidimensional problems, that is, one can replace a multidimen- 
sional problem by a succession of one-dimensional ones. For the case of multi- 
dimensional heat flows, when the Crank-Nicholson scheme is used for each one- 
dimensional equation, unconditional stability holds [17]. This is the reason why 
these techniques are adopted in the present flow problem. These stability condition 
seems to become less severe than those of ordinal explicit difference schemes. A 
Poisson equation, deduced for the pressure resolution, is solved by a triple sweep, 
an iterative method. For boundary conditions, introducing an image fluid flow out 
of the boundary, it is easy to impose nonslip (antisymmetry) or slip (symmetry) 
conditions on the boundary. Moreover, for the pressure boundary condition, a 
Neumann condition can be obtained by substituting the velocity boundary conditions 
into the Navier-Stokes equation. 

In Section 4, some numerical results for square and cubic cavities are reported. 
These are compared with results reported by Burggraf [3] and Takami and Kuwahara 
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[15]. First, numerical experiments were made on a square cavity flow for the cases of 
Reynolds number R = 100, 400, and 1000, with the aim of checking the validity of 
the present algorithm for the three-dimensional flow. Though Burggraf treated with 
the steady-state equation, with regard to stream function and vorticity, the present 
experiments deal with the original time-dependent Navier-Stokes equation, making 
straightforward calculation applicable to the three-dimensional flow. Next, computer 
experiments were performed for the three-dimensional flow within a cavity for 
Reynolds number R = 100 and 400. Based on results from these experiments, 
boundary effects were studied for cubic cavity flows. Also, secondary vortices, 
generated in a corner of the cavity, were studied. 

2. FORMULATION 

When we numerically solve the incompressible viscous Navier-Stokes equation 

,- 
z + grad P = -(u grad) u + G du, 

and the mass balance equation 

div u = 0, (2) 

using the difference method, the following two steps should be dealt with in general. 
Here, u is the velocity vector, P is pressure, and R is the Reynolds number. Numerical 
solutions for Eqs. (1) and (2) are obtained at each time step t = nd t, according to a 
time increment At. First, an auxiliary velocity is calculated by a difference scheme 
approximating Eq. (1). At this stage, this velocity field does not yet satisfy mass 
balance relations. Second, pressure and velocity values at the next step are obtained 
by using a discretized mass balance equation. 

Consider difference schemes of Eqs. (1) and (2): 

& @n+l - un) = F (- (u grad) u + f du) - GPn+', 

Dun+1 = 0 (4) 

where F is a suitable difference operator (given in the next section). Symbols G and D 
denote difference operators corresponding to grad and div, respectively. There are 
two different algorithms for calculating Eqs. (3) and (4) 

One method is given as follows. Taking an auxiliary velocity field ti and a corrective 
pressure P*, such that 

p”+l = p” + p*, (5) 



THREE-DIMENSIONAL CAVITY FLOWS 79 

we have 

& (zi - Us) = F (- (U grad) u + $ AU) - GPn, (6) 

First, ti is calculated by Eq. (6). Though li is a numerical solution approximating the 
Navier-Stokes Eq. (1) at t = n At, it does not yet satisfy mass balance Eq. (4). 
Second, therefore, using Eqs. (4) and (7), we obtain the (n + 1)th velocity which 
satisfies mass balance relations, and obtain the (n + 1)th pressure field. That is, 
operating D to Eq. (7) we get 

&(-Da)= -DGP*, (8) 

by Eq. (4). Hence, Eq. (8) becomes a discretized Poisson equation for P*: 

1 LP* =drDii, (9) 

where L (= DG) is a difference operator for Laplacian. Finally, we obtain Pn+l and 
u~+I by Eqs. (7) and (5). This method corresponds to that reported by Hirt and Cook 
SOI. 

The other method is given as follows. When considering an auxiliary velocity ZI 
only, the (n + 1)th velocity u %+l is calculated in the following form: 

-& (2; - Us) = F (- (U grad) u + f AU), (10) 

& (@+I - 6) = -Gp”+l. (11) 

It is noted that the pressure term does not appear in Eq. (10). Though Eq. (10) is not 
of a momentum conservation form, it can be easily seen that Eqs. (10) and (11) are 
numerically consistent with Eq. (3) by eliminating the auxiliary velocity ~2. First, the 
auxiliary velocity zi is calculated by Eq. (10). Then, using Eqs. (11) and (4), Dun+l = 
Dzi - dt DGPn+l = 0. Here, we similarly get a discretized Poisson equation for 
pn+1: 

1 LP"fl = dt DC. (12) 

In this case, the (n + 1)th pressure P n+l is obtained directly. Substituting Pn+l into 
Eq. (1 I), the (n + I)th velocity unfl is obtained. This method is a simple variant of the 
Chorin method [9]. 

581/30/r-6 
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These two types are essentially the same. The method used in the present calcula- 
tions of the two- and three-dimensional cavity flows is based on the latter type, 
considering numerical stability and memory storage activities which are needed for 
P* in the former type. Though boundary conditions become somewhat sophisticated, 
these conditions can be treated simply in the cavity flow calculation (Fig. 1). 

L 
u=i L-L 

I / 
Y 

:1 
‘\ \ 

‘\ 
0 I- 

X 

FIG. 1. A cubic cavity. 

3. NUMERICAL PROCEDURE 

This section presents a numerical algorithm. First, some notations and definitions 
are made; Ui,i,k (~,,~,~,~,ol = 1, 2, 3) represents the numerical value of velocity u at the 
(i, j, k) lattice point, each component is positioned at the face center of the cubic 
lattice; Pi,j,k represents the numerical value of pressure P and is positioned at the 
body center of the cubic lattice (Fig. 2). 

U3.I.i.k 

FIG. 2. Positions for each velocity component of ui,j,k and pressure P,.j,a. 

Symbols 6, and Szo denote the central differences: 

(14) 

Similarly, 6, , a,, , 6, , and S,, are defined by the central differences for each compo- 
nent. For the two-dimensional case, notations are given in a similar way. 
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3.1 Calculation of an Auxiliary Velocity Field ii 

In order to calculate an auxiliary velocity 6, the following scheme is adopted for 
Eq. (10): 

where u,* and u,** (LX = 1, 2, 3) are new auxiliary velocities, introduced for computa- 
tions. However, these variables do not need extra storage activities. This scheme is one 
of the splitting and fractional-step methods, which is a variant of the ADT method. 
Consistency of the above procedure is easily shown. Equations (15)-(17) are rewritten 
in the following forms, for a: = 1, 2 and 3: 

Li,* = (1 - dt QJ' umn, 

u,** = (1 - dt Q,)-’ u,*, 

ti, = (1 - dt QJ’ I.$*. 

Eliminating the intermediate fields a,” and u,h*, 

6, = (1 - dt Q&‘(l - dt Q,)-‘(1 - dt Q&%/u” 

= (1 + rlt Qz + dt Q, + ilt Q&a% + O(&) 

follows. This shows that the present procedure can be said to be an approximation of 
Eq. (10). 

Note that Eqs. (15)-(17) are of implicit form for each intermediate field uz, u,**, 
and zi, . Thus, by von Neumann’s linear theory [17], these schemes are unconditionally 
stable, assuming that each coefficient of nonlinear terms is a local constant. Though 
each of Eqs. (15)-( 17) is independently stable, total stability condition of Eqs. (15)-( 17) 
and Eq. (11) is not strictly derived. In numerical experiments in Section 4, however, 
stable solutions are obtained even if a time increment is the same order as a space 
increment, e.g., 

where urnas represents the maximum value of fluid velocity; I unlax 1 = 1.0 in the 
present calculations. 
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Boundary conditions are formally given in the following: 

u,* = u:+l - dt(Q&+’ + Q&+’ - G,P”+‘), (18) 

u** = (Y u:+l - At(Qpa”+’ - GuPn+‘), (19) 

&, = $+I + At G,Pn", (20) 

where G, (a = 1,2, 3) denote the backward difference operator in each component, 
e.g., 

1 

Boundary conditions (18)-(20) are derived in the following way. In Eq. (15), an 
intermediate velocity field U: is calculated by only the nonlinear and diffusion terms 
with the x-direction contribution. In order to keep numerical accuracy, this must be 
the same for its boundary condition. Therefore, boundary condition (18) is derived by 
subtracting they- and z-direction contributions (the diffusion and nonlinear terms) and 
the pressure contribution from the real boundary value U, at the (n + 1)th time step. 
In actual computation, we use an explicit form for the pressure term in Eqs. (18)-(20), 
i.e., the nth value Pn is used in place of the (n + l)th value Pn+l. Moreover, in the 
present cavity flow calculations, since Eq. (18) is used on the x = 0 and x = 1 plane 
(parallel to the y-z plane), values of Q&z+’ and Q&+l become zero. Thus, we have 

u,* = u,n+‘+ At G,P". (21) 

Equations (19) and (20) for u,** and fi, are derived in a similar way, and we have 
finally 

u,** = u:+l f At G,P", (22) 
^ 2.4, = u:+l -+- At G,P", (23) 

where UT” = 1 on the moving wall and $+I = 0 in the other cases. Detailed descrip- 
tions of these conditions are given in the next Section 3.3. 

For the two-dimensional cavity flow, slightly different schemes are adopted. 
Auxiliary velocity fields are calculated in a straightforward manner as follows: 

(24) 

& (B,,j - Vi”,j) = -Zi”,j S&!Tj - Vyj S,Vyf + f (S&$j + SvyV~j), (25) 

where 

and 
G.j = H”i,i + ui+l.j + Ui,j-1 + Ui+l.j-1). 
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3.2 Pressure and Velocity Calculations at the (n + 1)th Step 

Equation (12) is written in the following form: 

where Pi represents pressure neighboring P,, (Fig. 3). Though such a Poisson equation 
is solved by several algorithms, the following triple sweep was used to obtain an 
approximate solution. That is, for k = 0, 1, 2 ,..., 

p3** - 6P,** + PJ”* = -P,“-Pp,*-Pp,*-Pp,*+f, (28) 

pn,rc+1 
5 

_ ,,o”.“+l + p;.k+l = -PC* _ P;* - PC* _ P;* +j; (29) 

where Pins0 = Pin for each i. Note that the auxiliary pressure P* are evaluated for all 
the lattice points in the domain by the first sweep using Eq. (27), and so do P** and 
Pnek+l for the second sweep and the third sweep, respectively. We regard the above 
triple sweep as one iteration. This technique is a variant of the alternative direction 
implicit methods for the multidimensional Poisson equation. In the present case, where 
the solution approaches gradually to its steady state, only one iteration may be 
sufficient to obtain its numerical solution, i.e., PF+’ = Pi”“. The (n + 1)th velocity 
@+I is obtained by Eq. (11). 

PI P2 

FIG. 3. Positions for pressure Pi (i = 0, 1,'2 ,..., '6). 

Here, a few remarks on the above-mentioned pressure resolution are made. Since 
boundary conditions for the pressure equation, which are mentioned below, can be 
regarded as Neumann type, we have one choice to determine an absolute value of 
pressure. This implies that the matrix generated by the discretized Laplacian L in 
Eq. (12) is not of full rank. However, it is possible to uniquely determine the pressure 
field by the present iteration with the prescribed initial step. Such an iteration proce- 
dure corresponds to a discrete stepwise algorithm for a parabolic equation with 
initial and Neumann boundary conditions. Existence and uniqueness of solutions for 
such a parabolic equation, with suitable conditions, are known in the theory of partial 
differential equation; its steady-state solution satisfies the original Poisson equation. 
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3.3 Initial and Boundary Conditions 

For initial conditions, velocity u and pressure P are initially set to zero in the cavity. 
Boundary conditions are easily imposed. Velocities on the side wall and on the 

bottom wall are zero, and that on the upper wall is unit velocity 1. For pressure 
boundary conditions, substituting the velocities on the boundary into the Navier- 
Stokes equation (I), we get 

grad P = 4 Au. 

Therefore, when we calculate the (n f 1)th pressure P’lt-l by Eq. (12), its boundary 
condition is approximately given by the discretized form: 

1 Gp”f’ =- - ,lu”. 
R 

Thus, the pressure boundary condition is regarded as Neumann condition. 
Here, we derive the above-mentioned boundary conditions in discrete forms. For 

velocity conditions, consider the reverse flow out of the fixed boundary; we call this 
the antisymmetry condition and also the accelerated flow out of the moving boundary, 
such that the velocity on the moving boundary is equal to 1. 

Velocity boundary conditions used in the present cubic cavity flow are given in the 
following. As mentioned in the preceding section, boundary conditions for u*, u**, 
and zi are required in the three-dimensional case. 

WALL I I 

(a) A SIDE WALL (bl A MOVING WALL 

FIG. 4. Velocity field near walls. 

First, we describe boundary conditions for u *. The auxiliary velocity U* is calculated 
by Eq. (15) only in the x-direction. Therefore, boundary conditions are imposed on the 
x = 0 and x = 1 walls for each velocity component u,*, u,*, and u$. Though .;+I = 0 
holds on the x = 0 and x = 1 walls, values U: on these boundaries are not zero by 
Eq. (21), i.e., 

zi ,*, = At G,PTL 

= g (P,” - Pbn), (32) 
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on the x = 0 wall (Fig. 4a). A similar condition is imposed on the x = 1 wall. For the 
z-component velocity u,*, an antisymmetry condition on both walls is imposed, for 
example, 

u* * 3h = -U3n 9 (33) 

on the x = 0 wall (Fig. 4a). For the y-component velocity u$, the same condition is 
used. 

Boundary conditions for u** are similarly derived. The auxiliary velocity u** is 
calculated by Eq. (16) only in the y-direction. For u:* and u$*, an antisymmetry 
condition is used on the y = 0 wall and a symmetry condition is used on the y = 
f plane. For the y-component velocity u;*, we use the following conditions: 

** u?. = At G2P”, (34) 

on the y = 0 wall, and a symmetry condition on the y .= $ wall. 
As the auxiliary velocity ti is calculated in the z direction, its boundary conditions 

are imposed on the z = 0 and z = 1 walls. The condition used here for zi, is 

4,,+1 = 9@ + Al,,-1) - 2h.N (35) 

on the z = 1 wall. Each variable is shown in Fig. 4b. Equation (35) is derived by an 
extrapolation using the quadratic polynominal approximation satisfying the moving 
boundary condition (unit velocity). The condition for z& is 

At 
W-4 

The condition for ti, is similar to Eq. (32). It is noted that Eq. (35) is the condition for 
the (n + I)th step velocity ~:+-l. However, in the actual computation, we approximately 
applied this to the calculation for the auxiliary velocity ti, . 

When the (n + 1)th velocity are obtained by Eq. (ll), boundary conditions for 
ZP+~ are not necessary for the calculation. If the numerical solution tends to a steady 
state, boundary values of zP+l tend to their real boundary conditions in the present 
numerical procedure. For example, the auxiliary boundary value uI* on the x = 0 
wall is given by Eq. (32). Since the value does not change by the u,** and U, calculations, 
it still holds that 

At 
61, = 24: = z(P," - Pb*) 

on the x’ = 0 wall. On the other hand, the (n 7- 1)th boundary value UT:’ is obtained 
by Eq. (11) as follows: 

n+1- " 
% - 4a - At GIPnfl 

” 

= %a 
- 25$ (P,“” - p;+l). (38) 
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Therefore, 
n+1 

%a = g {(P,” - Pbn) - (Pi+1 - P:+l)} (39) 

holds. This shows that the (n + l)th boundary value tends to its real boundary value 
when the pressure field tends to its steady state. 

WALL 

ial A SIDE WALL lb) A MOVING WALL 

FIG. 5. Field variables near walls. 

Pressure boundary condition (31) is used for solving the triple sweep (27)-(29). 
Here, we describe these conditions in discrete forms for the two-dimensional case, 
essentially same as for the three-dimensional case. Each variable is shown in Fig. 5. 
On the fixed wall, we have, from Eq. (31), 

-& (Pa - P,) = f & @lan - 2Ubn + Ucn). 

Using ubn = 0 and u,” = u,~, we obtain 

Pb = P, - &ua? (41) 

Boundary conditions for the other fixed walls are similarly obtained. On the moving 
wall, we have, from Eq. (31), 

Thus by 
GJ+s = (7/3) wn - (l/3) 4-l 9 

and by v~,+~ = 0, we have finally 

p, = p, + & ((10/3) fAvn - (l/3) &-N-3. 

(43) 

(44) 

Equation (43) is derived by Eq. (35) for the nth velocity uz+r : 

u;;,, = Q(8 + &) - 2u,vn, (45) 
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and by the continuity conditions. By the continuity condition and P,:+~ = 0, we obtain 

n 
d&P = u,N+l - $N+l . (46) 

Substituting Eq. (45) into Eq. (46) for z.&,,+~ and z&+1 , respectively, we obtain 

= &(tf;,-, - tf;N-1) - 2(t& - t&N). (47) 

Using the continuity conditions 

12 

&N--l - t.f;&l = t’Nn - Z$-, (48) 

and 
un flN - t.fb”N = -VNn (49) 

we finally get Eq. (43). 
For the three-dimensional case, the same boundary conditions are used. Thus, we 

can continue the pressure iteration by the triple sweep. 

4. RESULTS AND DISCUSSIONS 

This section reports numerical results obtained for two- or three-dimensional 
cavity flow. First, computations for a square cavity are performed for R = 100, 
R = 400, and R = 1000. Second, computations for a cubic cavity are performed for 
R- lOOandR=400. 

Since the present technique for the three-dimensional calculations is essentially 
the same as that for the two-dimensional case, using the results for a square cavity 
flow, it is possible to ensure the validity of the present algorithm for a cubic cavity 
flow, specially treatment for boundary conditions and pressure resolution. Figures 6a 
and b show velocity profiles on vertical center-line of a square cavity for R = 100 
and for R = 400, respectively. The present results agree well with those reported by 
Burggraf [3] for both cases. In Fig. 6a, a slight difference can be seen in the result for a 
mesh size of l/20. It appears that a mesh size of l/20 is still coarse for a Reynolds 
number of 400. 

Figure 7 shows a result for a Reynolds number R = 1000. For such a high Reynolds 
number, numerical computations are not easy because of numerical stability and 
accuracy. However, we can obtain a satisfactory result, which almost agrees with the 
result obtained by Ozawa [8]. In comparing our result with that of Ozawa, however, a 
slight difference is seen, probably due to insufficiency of a mesh size: he used Ax = 
l/80 in his calculations; the present mesh size is Ax = l/40. For comparison, Fig. 7 
also shows the result obtained by Bozeman and Dalton [7]. It seems that their result, 
probably obtained by the UDC method, does not yet reach the steady-state solution. 
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RESULTS (AX=l/20 t-50.0) 
” RESULTS ( BURGGRiF 131) 

(a) R= 100 

FIG. 6. Velocity profiles on vertical center-line of a square cavity: (a) R = 100, (b) R = 400. 

-I 0 U I 

RESULTS (AX=l/30 t=500) 
-“- RESULTS (AX= l/20’ t =500) 
- RESULTS (BURGGRAk t31) 

lb) R=400 

They performed numerical computations for R = 1000 by two kinds of difference 
schemes: the UDC method and the UDD method in their notation. 

A few remarks on the location of the primary vortex center and the size of the 
upstream corner secondary vortex are made. The computed location of the primary 
vortex center is (0.538,0.575) in the square cavity, expressed in Cartesian coordinates. 
The result by Ozawa is (0.533, 0.529), and the result by Boseman and Dalton is 
about (0.57, 0.575) which was obtained by the UDD method. 

By the experimental results [18], the size of the upstream corner secondary vortex 
gradually increases from 0.1 to a maximum of approximately 0.35 around R = 500. 
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0 RESULTS lAX= l/40, t=50.01 
- RESULTS (AX= l/80, OZAWA C81) 
---- RESULTS (BOZEMAN AND DALTON C71) 

R = 1000 

FIG. 7. Velocity profiles on vertical center-line of a square cavity for R = 1000. 

With a further increase in R, its vortex begins to shrink slowly, whose size for R = 
1000 is about 0.27. The present computed size becomes about 0.38 for R = 1000. 
Ozawa’s result is about 0.37. The size obtained by Boseman and Dalton is about 0.32. 
Though a decrease tendency is shown by them, these three are almost in good agree- 
ment. It can be said that these three algorithms are applicable to such a high Reynolds 
number. 

For the three-dimensional case, the computational region dealt with is a unit cubic 
cavity 1 x 1 x 1, whose upper boundary is the sliding wall with a unit velocity. 
The mesh size used here is Ax = I/20, and the computational mesh points are reduced 
to 20 x 10 x 20 by considering the symmetry of the cavity. In view of the results of 
the two-dimensional flow for the case of R = 400, 30 x 15 x 30 mesh points are 
necessary to get a satisfactory result. However, it is hardly possible for such a case to 
perform computations because of the required computation time and memory 
storage activities. Thus, in this case, results for the 20 x 10 x 20 lattices are com- 
pared with those of 20 x 20 lattices in the two-dimensional cavity. By the similar 
reason, we did not perform computations for a Reynolds number R = 1000. 

Computational results for a cubic cavity flow are given in Figs. 8-12. Figure 8 
shows the x-component velocity profiles on the vertical center-line of a cavity for 
R = 100. The results mostly agree with those by Takami and Kuwahara. We also 
give the two-dimensional results obtained by Burggraf for comparison. Figure 9 
shows the results for R = 400. Comparing the results in a square cavity for Ax = l/20, 
it is possible to observe three-dimensional boundary effects. The present results 
mostly agree with those reported by Takami and Kuwahara. Some comments on 
three-dimensional boundary effects are made below. Figure 10 shows profiles of the 
x-component velocity in the x = 0.5 plane for the cases of R = 100 and R = 400. 
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0 RESULTS (AX=l/20. t=25.0) 
---- RESULTS (TAKAMI AND KUWAHARA [I511 
- RESULTS IIN A SQUARE CAVITY. 

BURGGRAF [31 I 

R = 100 

FIG. 8. Velocity profiles on vertical center-line of a cubic cavity for R = 100. 

I I I I I / , I 

-I 0 U 

0 RESULTS lAX=l/20, t=250) 
RESULTS (IN A SQUARE CAVITY AX=l/20) 

--‘- RESULTS ITAKAMI AND KUWAHdRA Cl511 
- RESULTS (IN A SQUARE CAVITY, 

BURGGRAF C31 I 

R = 400 

FIG. 9. Velocity profiles on vertical center-line of a cubic cavity for R = 400. 

For both cases, the boundary layer caused by a side wall locates near a wall. Flow 
patterns in the central part are almost of a two-dimensional flow. However, y- 
component velocity values are not so small. Table I lists their total amount, corre- 
sponding to each lattice numberj, where C j v / and xv represent the summation of 
absolute values of the y-component velocity and the summation of the y-component 
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FIG. 10. Profiles of the x-component velocity in the x = 4 plane. 

velocity values, respectively. The flow rate in the y-direction is about 2 % of that in 
the x- or z-direction. Figure 11 shows zero-contour lines for y-component velocities 
for each y = jdx plane (j = 1, 2,..., 9). For both cases R = 100 and R = 400, 
these contours separate a cavity into two regions. One is positive velocity region and 
the other is negative velocity region. Even, in the central part, there is a tendency for 
the central flow to go toward an inner direction. On the other hand, the flow near 
the wall goes toward an outer direction. 
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TABLE I 
Total Amount of y-Component Velocity in a Cavity Flow Corresponding to Each Lattice Numberj 

R = 100 R = 400 
i Clul co Cl0 DJ 

1 0.0 0.0 0.0 0.0 
2 I .950 PO.6 x IO-’ 3.278 1.6 x IO-fi 
3 3.833 0.0 x 10-G 6.067 2.2 Y IO-6 
4 5.053 -0.1 :;: IO-” 7.472 3.2 r’ lo-” 
5 5.530 -0.1 X IO-6 7.650 3.1 x 10-f; 
6 5.381 -0.1 x 10-e 6.980 2.7 :I IO-” 
7 4.765 0.0 x 10-e 5.780 2.1 x 10-C 
8 3.818 0.0 x 10-G 4.377 1.3 >; IO-” 
9 2.652 0.0 x 10-e 2.916 0.6 > 10~6 

10 1.356 -0.9 :< 10-e 1.452 3.3 :< 10 i 
11 0.0 0.0 0.0 0.0 

Note. j = 1 and j = 11 represent the side wall and the y = 4 plane, respectively. 

05 

0 X I 

la) R=lOO 

0 X I 

tb) R=400 

FIG. I 1. Zero-contour lines of the y-component velocities for each y = jOx plane (j = 1, 2,..., 9). 
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FIG. 12. Profiles of the flow vector in the y = $ plane. 

Figures 12a and b show profiles of flow vectors in the y = 4 (strictly speaking, 
y = $(l - 6 Ll )) 1 x pane for Reynolds numbers R = 100 and R = 400, respectively. 
For two-dimensional flows, its scalar stream function exists. However, since such a 
function does not exist in the present case, it is better to examine the structure of the 
flow by means of flow vectors. As shown in Figs. 12a and b, two secondary vorticies 
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are generated in the bottom corners in the cavity for both cases R = 100 and R = 400. 
Each length of the secondary eddies is almost in agreement with those reported by 
Burggraf in the two-dimensional case. For the primary eddy in the square cavity, 
Burggraf discussed mesh size dependence for the location of its center. In the present 
three-dimensional calculations, each location almost agrees with the results obtained 
by Burggraf with an accuracy of less than the mesh size AX = l/20 for both R = 
100 and R = 400. However, these slight differences may be due to the boundary 
effect in the cubic cavity. 

0 
lo+ ! 0 0 0 

0 5 IO 15 20 t 25 

FIG. 13. Behaviour of maximum pressure difference between two time steps. 

Figure 13 shows behavior of the maximum pressure difference between two time 
steps: max j Ptj,B - PC;\ j. For R = 100, it can be said that the solution at t = 18 
has already reached its steady state. For R = 400, the solution almost reaches its 
steady state. By numerical checking, it is found that both numerical solutions at 
t = 25 satisfy mass balance Eq. (4) with an accuracy of less than almost 10e6. It is 
noted that the spectral radius of the iteration (24)-(26) for the Laplace equation is 
0.970924. 

5. CONCLUDING REMARKS 

The major point of the present algorithm is to deal with only one-dimensional 
forms for both velocity and pressure calculations in spite of the three-dimensional 
equations. Further, all the schemes used here for each one-dimensional form are of 
implicit form. Thus, stability conditions for the present method becomes less severe. 
The time mesh size used in the computations is At = 0.05 satisfying a relation 
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which corresponds to a formal stability condition for one-dimensional hyperbolic 
equations. This saves more computation time and makes the algorithm simple. The 
present three-dimensional calculation (R = 100 or 400) requires 48K words and 
50 min, using an ACOS-700 computer; its computation speed is about one-fourth 
as large as that of the CDC-6600 computer. 

The numerical results show that cubic cavity flows are almost of two-dimensional 
form, but boundary effects are not negligibly small. 

We make a remark on the velocity boundary conditions. In view of the present 
numerical results, though satisfactory results are obtained, it may be possible that 
results with high accuracy are obtained by considering the pressure correction for all 
the auxiliary velocity boundary conditions. 
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